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Abstract: By using cloud computing it is possible to provide on- demand resources for 
epidemic analysis using computer intensive applications like SaTScan. Using 15 virtual 
machines (VM) on the Nimbus cloud we were able to reduce the total execution time for the 
same ensemble run from 8896 seconds in a single machine to 842 seconds in the cloud. Using 
the caBIG tools and our iterative software development methodology the time required to 
complete the implementation of the SaTScan cloud system took approximately 200 man-hours, 
which represents an effort that can be secured within the resources available at State Health 
Departments. The approach proposed here is technically advantageous and practically 
possible. 
 

Introduction 
 

SaTScan [1] is a computer intensive application that is commonly used to detect 
cluster characteristics of epidemics that provide decision support to epidemiologists. In 
practical applications long ensemble runs of SaTScan provide public health analysts with 
insight into the epidemics’ progression that result in higher confidence policy decisions. 
SaTScan ensemble runs test the alternative hypothesis that there is elevated disease risk 
within a defined cluster. The estimated p-value for these tests is based on the rank of the 
likelihood from the real data compared to that from the random data sets generated during the 
Monte Carlo randomizations. This rank is conditional on the random data sets generated and 
if the random seed were not set to a constant would vary for each replication of the software 
run. Although only one random set is realized, it is part of a distribution of possible ranks if 
the random seed were allowed to vary. The variance in this distribution depends on the 
number of Monte Carlo realizations.  The more Monte Carlo realizations that are run, the 
variance in the p-value will be smaller and the estimate will be closer to the true p-value. For 
decisions in epidemiology that involve possible implementation of contact tracing or other 
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expensive and invasive processes where the statistical significance is close to the decision 
threshold, an estimated p-value close to the truth is especially important. An estimated p-value 
from a small number of Monte Carlo realizations has a greater chance of under or over 
estimating the truth and leading to an incorrect decision. An estimated p-value from a large 
number of Monte Carlo realizations is closer to the true value and is more likely to lead to a 
correct decision.  
   

Unfortunately, ensemble runs long enough to provide adequate confidence in 
decisions require computational resources that are usually beyond those available at typical 
health department analytical facilities. Cloud computing provides such resources without 
deploying extensive computational resources for very limited and sporadic use. Moreover, 
cloud resources could be implemented on top of existing infrastructures dedicated to routine 
office tasks in public health departments or similar organizations. 
  

Similar work reported in the literature includes the Visual Statistical Data Analyzer 
(VISDA), a grid-based analytical tool [2,3] that includes spatial analyses, and work done 
using the Open-Source Grid-Computing technology to improve processing time for geospatial 
syndromic surveillance [4]. Both projects illustrated the value of grid computing in spatial 
analysis. Our work leverages the cloud which has the ability to be flexible in the amount of 
nodes involved and is not limited by hardware constraints in terms of amount of computer 
resources available.  Moreover, the cloud provides resources at a much lower level of 
abstraction than grids and eliminates many of the cumbersome infrastructural and sharing 
agreements needed to deploy computational grids [5]. 
 

This paper reports our successful implementation of a SaTScan cloud system using the 
Nimbus TP2.X software [6]. To demonstrate its use we present the analysis of epidemic data 
from high-fidelity, agent-based simulation of pertussis epidemics.  The model was built by the 
Virginia Bioinformatics Institute using their EpiSimdemics simulation platform [7] and 
consists of the space-time details of 2.2 million in silico individuals modeled after Utah 
population and physical geography [8]. This model maintains a disease profile for each 
individual that simulates both the presence and severity of symptoms, infectivity, and 
likelihood for seeking the help of a doctor.  Individuals who were treated became less 
infectious or non-infectious once treated.  The disease transmission model was based on the 
van Rie and Hethcote compartmental model for pertussis [9]. 

 

Methods 

Design Decisions & Software Implementation   
 

While the work presented here could be implemented using SOAP, the WSRF 
implementation is a better approach because it allows the integration of the cloud version of 
SaTScan into emerging public health grid infrastructures [10, 11].  At the time of this 
implementation the only WSRF (grid) solution for cloud computing accessible to the authors 
was the Nimbus cloud deployed at Argonne National Lab.  Nimbus is an open source toolkit 
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that allows developers to turn a cluster into an Infrastructure-as-a-Service (IaaS) cloud (http:// 
workspace.globus.org). 
   

We accomplished our implementation using an iterative development approach with 
short iterations: iteration 1 involved installing and configuring SaTScan on a Linux based 
computer at the University of Utah and then wrapping SatSCan into a grid service; iteration 2 
consisted of the deployment of this service on the Argonne Nimbus cloud; and, the final stage 
consisted of testing the performance and scalability of the cloud version of SatSCan. 

 
A major design decision that we faced was where to implement the cloud client logic 

that would provide the on-demand functionality of the SaTScan cloud system. The choice was 
either to create a grid service that had the ability to stand-up SaTScan grid services and 
another grid service that could be invoked to run SaTScan jobs or to create a single SaTScan 
grid service that could perform both functions. Because the Nimbus server provides a general 
interface that allows users to stand-up various virtual machines, such as the SaTScan grid 
node virtual machine, there was no need to duplicate the Nimbus server-side capability to 
stand up a virtual machine (VM), greatly simplifying our deployment efforts. 

  
SaTScan is a legacy application and in order to rapidly create a SaTScan grid service 

we used Introduce, gRAVI and the caGrid portal [12].  These tools and others developed by 
the caGrid project (http://cagrid.org/display/introduce/Home) provide a set of tools and a 
layer of abstraction around Globus WS-Core  that significantly reduce the amount of effort 
required to deploy grid services. Introduce is an extensible toolkit to support easy 
development and deployment of WS/WSRF compliant grid services by hiding low level 
details of the Globus Toolkit and enabling the semi automatic implementation of strongly-
typed grid services. Introduce has many useful plug-ins that are also available for further 
assistance. We used the Grid Rapid Application Virtualization Interface (gRAVI), a plug-in 
that allowed us to quickly wrap and deploy legacy application as Globus compliant grid 
services (http://dev.globus.org/wiki/Incubator/gRAVI). 

 
 Our development started by determining the parameter set required to execute 

SaTScan from the command line, then we used gRAVI and Introduce to wrap the SaTScan 
command line interface into a grid service.  The caGrid portal provided an efficient and 
effective way to verify that the SatSCan grid service was deployed correctly. The caGrid 
portal leverages Google maps to depict grid services from the particular grid for which it has 
been configured. To test the deployment of the SaTScan grid service we used the caGrid 
training grid. As depicted in Figure 1, the SaTScan grid service appears correctly on the 
caGrid portal implying that the deployment has been successful. To verify that the SaTScan 
grid service was functional, we invoked the service using the SaTScan grid service client that 
was also created automatically by Introduce and gRAVI.   
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Figure 1: The caBIG portal for the test grid showing that the SaTScan grid service has 
been deployed successfully in Salt Lake City. UT 

 
To demonstrate the dynamic scalability of our grid service with the goal to provide the 

on-demand SaTScan computer resources, we used the Argonne National Lab Nimbus cloud. 
To accomplish this we used the SaTScan grid service implemented on a Linux VM. The VM 
editing features available on the Nimbus client-side allowed us to use an existing Linux VM 
and edit it as needed.  As part of the customization we added the caGrid software stack, the 
SaTScan grid service and configured a minimum of necessary services to initialize at boot 
time. At this point we were able to successfully stand-up a SaTScan grid node on-demand on 
the cloud and invoke it from a remote client. 

 
In order to automatically manage the SaTScan clients we created a handler using the 

bash programming language. This handler, SaTScan Handler, manages all aspects of each 
SaTScan grid client including stage-in, job status progress and stage-out. The architecture of 
the handler is similar to the one used in our previous reported work on Digital Sherpa [13]. 
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Scaling tests 
 

For the scaling experiments we were able to stand-up up to 15 VMs in the Argonne 
Nimbus cloud. The first step in this process is to dynamically acquire the resources (VMs) 
needed for the desired run by invoking the Nimbus Workspace Service using the Nimbus 
Workspace Client. Fig. 2 depicts the different systems involved in this process. 

 

 
 

Figure 2: Initializing dynamic allocation of VMs using the Nimbus Workspace 
Service 

 
 
Once the Nimbus Work Space service has been secured it is possible to start booting 

the Linux VM with the SaTScan grid services. The system obtained after the boot process 
completes is depicted in Fig. 3 
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Figure 3: SaTScan VMs have been dynamically acquired and deployed in the cloud. 
They are ready to execute ensemble runs as they are sent by the SaTScan clients managed by 

the SaTScan Handler. 
 
 
The SaTScan Handler manages the ensemble runs, which for these tests included up to 

15 SaTScan Grid Clients.  As depicted in Fig. 3, each SaTScan Grid Client in the SaTScan 
Handler submits a single SaTScan run to be processed by a SaTScan Grid Service, which 
delivers the task to the SaTScan executable. Upon completion the client moves the output 
files to the local host and the SaTScan Handler assembles the complete output of the 
ensemble run. 

 
We prepared SaTScan’s instruction files (.prm) to run a total of 9,990 Monte Carlo 

simulations using the same data files on 5, 8, 12, 13 and 15 VMs running the SaTScan Grid 
services, but using different seeds for the SaTScan’s random number generator.  The data files 
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included all 2.2 million individuals divided into the 292 Utah Zip Codes (population & 
coordinates files) for the full 210 simulated days (the full duration of the simulation) with 
resolution at the “day” level. A total of 4,521 cases were reported in the “case” file.  For 
analysis type, we set SaTScan to run a retrospective space-time analysis using a Poisson 
distribution that assumes rare events.  Aggregated and packaged data files for SaTScan, 
including case, coordinates and population, were approximately 1 MB and each of the 
SaTScan instruction files was approximately 8 KB.  These are relatively small files and their 
transfer across the network does not increase the execution times significantly.  Each VM in 
the cloud received approximately equal numbers of Monte Carlo simulations that are 
inversely proportional to the total number of VMs involved. For example, if we have ten VMs 
each one received 999 Monte Carlo replicates to compute.  To establish a base line 
performance we also instructed one single node to run all 9990 Monte Carlo replicates using 
the same data files and analysis instructions. We verified that SaTScan ensemble runs 
performed in parallel on the cloud produce the same results as the sequential runs. 

 

Results and Discussion 
 

To evaluate the potential usefulness of the SaTScan cloud service for prospective 
users, we addressed the following user-oriented questions: 

 
• When a user requests a cloud VM from the grid service, how long will it take before 

the VM is available for use? 
• When using the cloud, what is the overhead incurred by the calculations?  
• What is the overall speed up of the calculations and how does it reflect on the 

perceived turnaround?  
 
The turnaround time of the simulations, which these questions address, is paramount 

for epidemiologists. Depending on the results of each simulation they must decide on either 
performing new simulations or taking preventive action through normal public health 
communication channels. 

  
The first question was addressed under the assumption that there is no contention for 

the requested resources, i.e. we measured the time required to stand up a cloud node as the 
cumulative time of transferring the OS image that represents the VM and booting the guest 
OS on the Nimbus cloud. Further delays may be observed if the cloud available to the runs is 
oversubscribed.  In order to make boot-up faster we created an image that initializes as few 
services as possible.  Using this strategy we were able to reduce the time needed for one node 
to boot from 283 seconds to 207 seconds (all times plus or minus 10-15 seconds).  We also 
tried compressing the image to improve transfer time but the overhead due to the time 
required to uncompress the image far outweighed the benefits.  While this overhead is 
significant, it is only a small fraction of the total execution time of a typical ensemble run, for 
comparison our 9,990 Monte Carlo ensemble run required approximately 8,996 seconds in a 
single processor.  
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To address the second question we ran 999 and 9,990 Monte Carlo replicas. The 

execution times without the VM and the grid services overhead were 901 seconds and 8,996 
seconds, respectively. When running the SaTScan grid service on a VM these times increased 
to 1,078 seconds and 10,700 seconds, respectively. This represents an increase of 10.87 % and 
18.99 % of the execution time; the slow down for a larger job can be attributed to the deeper 
software stack and VM cpu overhead.  

 
Table 1: Scalability results of the SaTScan grid services provided in the Nimbus cloud 

(execution times in seconds). 

VMs Execution time  Speedup Replicates  per node 

1 10700 1 9990 

5 2144 4.99 1998 

8 1289 8.30 1249 

10 986 10.85 999 

13 725 14.75 769 

15 635 16.85 666 

 
To address the third question we compared the run of a SatSCan job of 9,990 Monte 

Carlo replicates on a single VM using the SatSCan grid service with the execution of the same 
number of Monte Carlo replicas in different number of nodes using also the VMs and the 
SaTScan grid services. The results are entered in Table 1 and Fig. 4. 

 
The excellent scaling (for a constant size problem) depicted in the table is due to the 

nature of ensemble runs with embarrassing parallel characteristics. In parallel computing, an 
embarrassingly parallel workload is one for which little or no effort is required to separate the 
problem into a number of parallel tasks. This is often the case when no dependency (or 
communication) exists between the parallel tasks. 
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Figure 4: Total execution time of SatSCan on the Nimbus cloud as function of the number of 

VMs used. Execution times are in seconds. 

Moreover, the overhead incurred by using a VM increases with the number of Monte 
Carlo replicates, and by running multiple copies of smaller number of replicates we are able 
to reduce this overhead, leading to the super-linear scaling depicted in Table 1. The scaling 
depicted in Table 1 is excellent, but for large number of VMs the start up cost may become a 
potential bottle neck. For the levels of parallelism explored here we believe that our results 
demonstrate that using a cloud approach provides on- demand computational resources for 
epidemiology surveillance. It is remarkable that when using 15 VMs the total execution time 
of 842 seconds, which includes 635 seconds of execution and the 207 seconds needed to stand 
up the VMs, is one order of magnitude smaller than the 8,896 seconds required to run the 
complete ensemble in one machine.  

 

Conclusions 
 

By using cloud computing and a computer intensive application like SaTScan, it is 
possible to provide on-demand resources for epidemic analysis. Therefore, implementing a 
cloud across the existing internal infrastructure of a health department may be a viable 
approach for large-scale epidemiology surveillance on demand. We have demonstrated that 
when using SaTScan we achieved an order of magnitude improvement in the turnaround, 
making possible a detailed analysis that may not be possible with the typical resources 
existing in public health departments. The techniques used for SaTSCan on the cloud could be 
generalized to any application that exhibits substantial parallel content. Using the caBIG tools 
and our software development methodology the time required to complete implementation 
took approximately 200 man-hours, an effort that could be secured with typical state health 
department resources. The approach proposed here is technically advantageous and can be 
practically implemented. 
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